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‡ Department of Physics, Chongqing University, Chongqing, Sichuan 630044, People’s Republic
of China
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Abstract. The graded version of quantum Yang–Baxter relation for the one-dimensional Bariev
chain of fermions is formulated. From this relation the commutativity of the transfer matrices for
different values of the spectral parameter follows. Our result is consistent with the applicability
of the traditional Bethe ansatz method. Further, the first non-trivial conserved current next to
the Hamiltonian is constructed.

Recently, there has been considerable interest in the study of strongly correlated fermion
systems. In particular, the discovery of high-Tc superconductivity has greatly stimulated
studies of various electron lattice models in one dimension (1D) [1–8], which are exactly
soluble using the coordinate Bethe ansatz method [9]. Notably, it has been found that many
models, such as the 1D Hubbard model [5], the supersymmetric t–J model [2], and the 1D
Bariev chain of fermions [6], exhibit different physical behaviour.

Although these models may be mapped into their equivalent coupled spin chains, it
seems to be still interesting to investigate their mathematical structure from the graded
version of the quantum inverse scattering method (QISM) [9, 10]. As was emphasized in
[11], by studying their relationships with quantum spin chains, one may put on an equal
setting the fermion chains and the related coupled spin chains. This has been done by
Wadati and his coworkers [11] for the 1D Hubbard model and by Essler and Korepin
[8] for the supersymmetric t–J model. However, in contrast to these two well studied
models, the algebraic structure of the 1D Bariev chain of fermions remains unexplored so
far.

Recently, we have succeeded in constructing the Lax operator as well as the quantum
R-matrix for a coupled spin chain which is equivalent to the Bariev chain of fermions [12].
Guided by these results, in this paper we will present the graded version of the quantum
Yang–Baxter relation for the Bariev chain of fermions. From this a one-parameter family of
commuting transfer matrices is constructed. Our result is consistent with the applicability
of the traditional Bethe ansatz method [6]. Further, the first non-trivial conserved current
next to the Hamiltonian is constructed.
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To begin with, let us consider a one-dimensional periodic fermion chain ofN sites with
Hamiltonian [6]

H =
N∑

j=1

[(c†
j↑cj+1↑ + c

†
j+1↑cj↑) exp(ηnj+1↓) + (c

†
j↓cj+1↓ + c

†
j+1↓cj↓) exp(ηnj↑)]. (1)

Herec
†
jα andcjα are, respectively, the creation and annihilation operators of fermions with

spin α(=↑ or ↓) at sitej andnjα is the density operator.
Let us first note that the integrability of model (1) is related to the fact that the equations

of motion derived from the above Hamiltonian may be cast into the Lax form [13]:

L′
j = Mj+1Lj − LjMj . (2)

Here we only write down theL operator

Lj(λ) = L̃j (λ)
˜̃
Lj(λ) (3)

with

L̃j (λ) =


λ exp(η) + (i − λ exp(η))nj↑ 0

0 λ + (i − λ)nj↑√
1 + exp(2η)λ2c

†
j↑ 0

0 −√
1 + λ2c

†
j↑

−i
√

1 + exp(2η)λ2cj↑ 0
0 i

√
1 + λ2cj↑

1 − (1 + iλ exp(η))nj↑ 0
0 1− (1 + iλ)nj↑

 (4)

and

˜̃
Lj(λ) =


λ exp(η) + (i − λ exp(η))nj↓

√
1 + exp(2η)λ2cj↓

−i
√

1 + exp(2η)λ2c
†
j↓ 1 − (1 + iλ exp(η))nj↓

0 0
0 0

0 0
0 0

λ + (i − λ)nj↓
√

1 + λ2cj↓
−i

√
1 + λ2c

†
j↓ 1 − (1 + iλ)nj↓

 (5)

whereλ denotes the spectral parameter. It should be noted that theL operator is a 4× 4
supermatrix with paritiesP(1) = P(4) = 0, P(2) = P(3) = 1. Thus the quantum Yang–
Baxter relation should be understood in the sense of Grassmann algebra [14–16]:

R(λ, µ)Lj (λ) ⊗s Lj (µ) = Lj(µ) ⊗s Lj (λ)R(λ, µ). (6)

Here⊗s denotes the Grassmann tensor product defined by

(A ⊗s B)ik,j l = (−1)[P(i)+P(j)]P(k)AijBkl.

After lengthy but straightforward calculation, we find that such anR-matrix does exist:
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R(λ, µ) =

ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ρ2 0 0 iρ3 0 0 0 0 0 0 0 0 0 0 0
0 0 ρ2 0 0 0 0 0 iρ3 0 0 0 0 0 0 0
0 0 0 ρ4 0 0 −iρ5 0 0 iρ6 0 0 −ρ9 0 0 0
0 −iρ3 0 0 ρ2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρ1 0 0 0 0 0 0 0 0 0 0
0 0 0 iρ12 0 0 ρ7 0 0 −ρ15 0 0 −iρ5 0 0 0
0 0 0 0 0 0 0 ρ8 0 0 0 0 0 −iρ11 0 0
0 0 −iρ3 0 0 0 0 0 ρ2 0 0 0 0 0 0 0
0 0 0 −iρ13 0 0 −ρ15 0 0 ρ10 0 0 iρ6 0 0 0
0 0 0 0 0 0 0 0 0 0 ρ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ρ8 0 0 −iρ11 0
0 0 0 −ρ14 0 0 iρ12 0 0 −iρ13 0 0 ρ4 0 0 0
0 0 0 0 0 0 0 iρ11 0 0 0 0 0 ρ8 0 0
0 0 0 0 0 0 0 0 0 0 0 iρ11 0 0 ρ8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1



(7)

with

ρ2 =
√

1 + h2λ2
√

1 + h2µ2

1 + h2λµ
ρ1

ρ3 = (λ − µ)h

1 + h2λµ
ρ1

ρ4 =
√

1 + h2λ2
√

1 + h2µ2
√

1 + λ2
√

1 + µ2

(1 + λµ)(1 + h2λµ)
ρ1

ρ5 = h
√

1 + h2µ2
√

1 + λ2(λ − µ)

(1 + λµ)(1 + h2λµ)
ρ1

ρ6 =
√

1 + h2µ2
√

1 + λ2(λ − µ)

(1 + λµ)(1 + h2λµ)
ρ1

ρ7 =
(

1 + h2(λ − µ)2

(1 + λµ)(1 + h2λµ)

)
ρ1

ρ8 =
√

1 + λ2
√

1 + µ2

1 + λµ
ρ1

ρ9 = (λ − µ)(λ − h2µ)

(1 + λµ)(1 + h2λµ)
ρ1

ρ10 =
(

1 + (λ − µ)2

(1 + λµ)(1 + h2λµ)

)
ρ1

ρ11 = λ − µ

1 + λµ
ρ1

ρ12 = h
√

1 + h2λ2
√

1 + µ2(λ − µ)

(1 + λµ)(1 + h2λµ)
ρ1

ρ13 =
√

1 + h2λ2
√

1 + µ2(λ − µ)

(1 + λµ)(1 + h2λµ)
ρ1
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ρ14 = (λ − µ)(h2λ − µ)

(1 + λµ)(1 + h2λµ)
ρ1

ρ15 = h(λ − µ)2

(1 + λµ)(1 + h2λµ)
ρ1

whereh = expη.
We now proceed to establish the relation between the Hamiltonian (1) and the transfer

matrix τ(λ), which is the supertrace of the monodromy matrixT (λ) defined by

T (λ) = LN . . . L1. (8)

From (6) it follows that

R(λ, µ)T (λ) ⊗s T (µ) = T (µ) ⊗s T (λ)R(λ, µ). (9)

Thus we have

[τ(λ), τ (µ)] = 0. (10)

This implies that one may viewτ(λ) as the generating functional of an infinite number of
commuting conserved currents, which may be obtained through the expansion of lnτ(λ) in
powers ofλ,

ln τ(λ) = ln τ(0) + Hλ + 1
2(−i)Jλ2 + · · · (11)

whereJ is the first non-trivial conserved current:

(−i)J =
N∑

j=1

{[(c†
j+1↑cj−1↑ − c

†
j−1↑cj+1↑) + (↑→↓)]

+(exp(η) − 1)[(c†
j+1↑cj−1↑ − c

†
j−1↑cj+1↑)(nj+1↓ + nj↓)

+(nj↑ + nj−1↑)(c
†
j+1↓cj−1↓ − c

†
j−1↓cj+1↓)]

+ 1
2(exp(2η) − 1)[(c†

j↑cj−1↑ + c
†
j−1↑cj↑)(c

†
j+1↓cj↓ − c

†
j↓cj+1↓)

+(c
†
j↑cj−1↑ − c

†
j−1↑cj↑)(c

†
j+1↓cj↓ + c

†
j↓cj+1↓)

+(c
†
j+1↑cj↑ + c

†
j↑cj+1↑)(c

†
j+1↓cj↓ − c

†
j↓cj+1↓)

+(c
†
j+1↑cj↑ − c

†
j↑cj+1↑)(c

†
j+1↓cj↓ + c

†
j↓cj+1↓)]

+(exp(η) − 1)2[(c†
j+1↑cj−1↑ − c

†
j−1↑cj+1↑)nj+1↓nj↓

+nj↑nj−1↑(c
†
j+1↓cj−1↓ − c

†
j−1↓cj+1↓)]}. (12)

In conclusion, we have presented the graded version of the quantum Yang–Baxter
relation for the 1D Bariev chain of fermions. This allows us to write down the commuting
transfer matrix, which is the generating functional of an infinite number of conserved
currents. In particular, the first non-trivial conserved current next to the Hamiltonian
is explicitly constructed. Our result is consistent with the applicability of the traditional
Bethe ansatz method [6] and may be useful in understanding the completeness of the Bethe
eigenvectors. An interesting question which remains open is to derive the Bethe ansatz
equations from either the algebraic Bethe ansatz or the analytic Bethe ansatz approach. We
hope to return to this question in the near future.
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